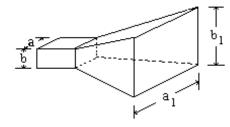
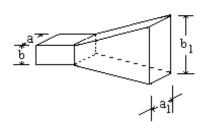
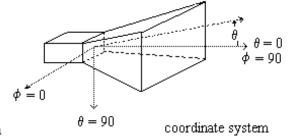
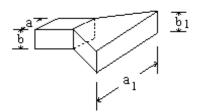

ANTENNE A TROMBA

ANTENNE A TROMBA

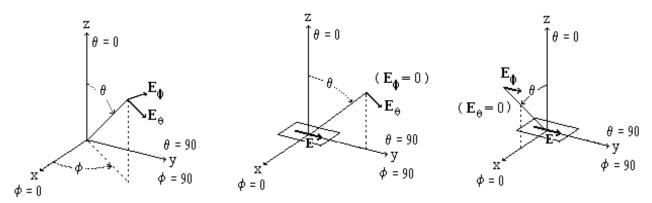



Geometria delle antenne a tromba


Vari tipi di antenne a tromba ad apertura rettangolare.



Pyramidal horn


E-plane sectoral horn

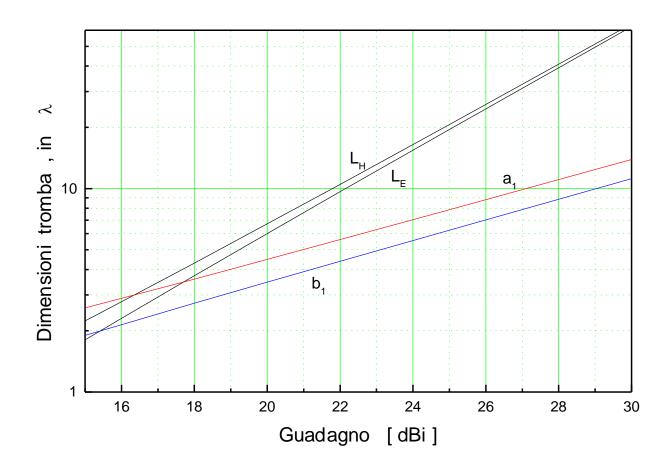
H-plane sectoral horn

Sistema di coordinate:

Esempio : campo E nel piano-E principale e nel piano-H principale con una sorgente *E-field sectoral horn*

.

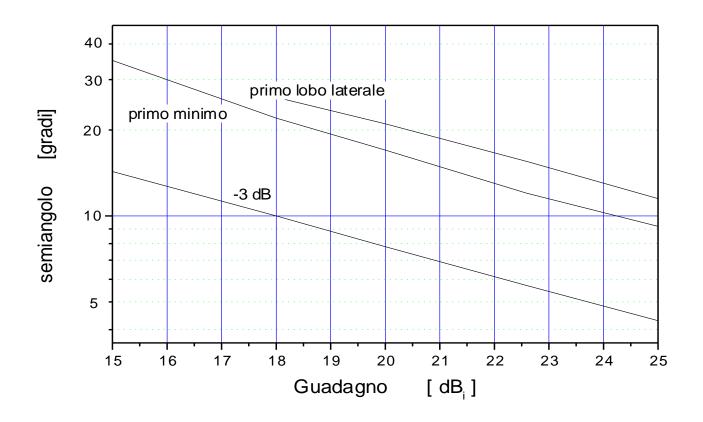
Il campo nel piano-E e nel piano-E in funzione di θ dipende solo dalla dimensione dell'apertura nel piano-E o dal piano-E e dalla lunghezza della tromba. Questo consente di trattare le trombe piramidali come costituite da trombini con allargamento della guida solo nel piano E o solo nel pi


Dimensionamento delle antenne a tromba piramidali.

Quando la lunghezza della tromba è molto grande rispetto alla dimensioni della bocca , l'onda che emerge dall'apertura è praticamente un'onda piana (non c'è variazione di fase tra le varie posizioni sull'apertura);in queste condizioni si ha il massimo rendimento ed il guadagno dell'antenna si avvicina al valore $G_i = 4 \pi \ a_1 \ b_1$ (tutte le dimensioni sono espresse in λ) .

Con una tromba di minore lunghezza, dall'apertura emerge un'onda ancora sferica con centro circa sul vertice della tromba (dimensioni ρ_1 e ρ_2). Pertanto la fase del campo al centro dell'apertura anticipa la fase del campo ai bordi della bocca e questo determina una perdita di guadagno.

Se la lunghezza della tromba è ulteriormente ridotta (dimensioni ρ_1 e ρ_2 circa uguali alle dimensioni della bocca , a_1 e b_1) lo sfasamento tra le varie parti dell'apertura è talmente grande che si determinano lobi secondari ed il massimo non è più sull'asse della tromba) .

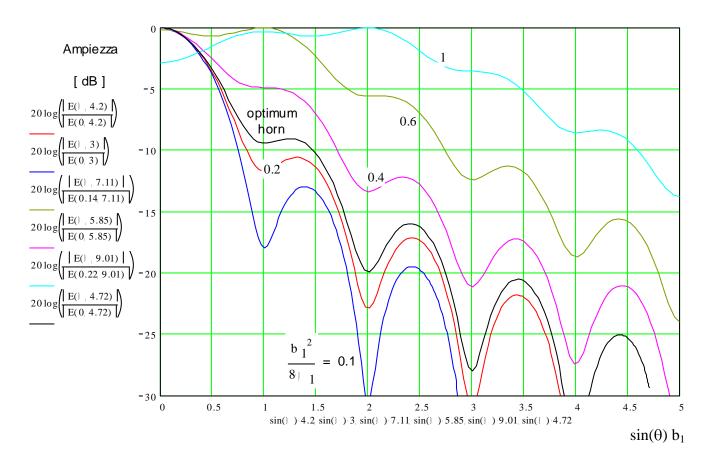

In genere si ricorre ad un compromesso per ottenere un buon guadagno con dimensioni limitate della tromba. Questo *optimum horn* presenta caratteristiche standard (primo lobo laterale a - 9 dB, ecc...) e le sue dimensioni sono riportate nella figura seguente.

Principali caratteristiche di antenna a tromba piramidale con dimensioni di optimum horn .

Semilarghezza del lobo principale a -3 dB nel piano-E.

Angolo θ del primo minimo e del primo lobo laterale (l'ampiezza del primo lobo laterale è di -9 dB , rispetto al massimo per $\theta=0$) , nel piano-E.

					E - plane			H-plane
Guadagno	Lunghezza	Lunghezza	Apertura	Apertura	Angolo	Primo	Angolo primo	Angolo
dB_i	$L_{\rm E}$	L_{H}	b_1	a_1	-3 dB	minimo	lobo laterale	-3 dB
	[λ]	[λ]	[λ]	[λ]	[gradi]	[gradi]	[gradi]	[gradi]
15	1.803	2.235	1.899	2.59	± 14.3	± 35		± 16.0
18	3.73	4.303	2.731	3.593	± 10.0	± 22	± 26	± 11.1
20	6.012	6.705	3.468	4.485	± 7.8	± 17	± 21	± 8.8
22.6	11.116	12.009	4.715	6.002	± 5.7	± 12.0	± 15.5	± 6.5
25	19.516	20.653	6.248	7.871	± 4.3	± 9.2	± 11.5	± 5.0

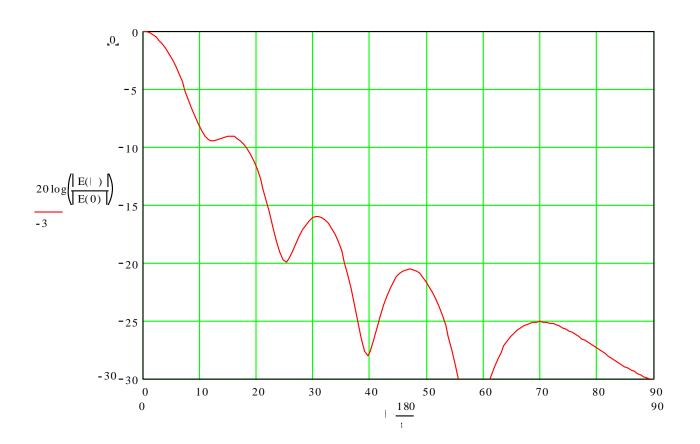

Antenna a tromba "optimum horn " - Dimensioni in $\boldsymbol{\lambda}$.

Larghezza del lobo a -3 dB , angolo del primo minimo e del primo lobo laterale , in gradi , nel piano E . Il livello del primo lobo laterale , in queste condizioni, è di -9 dB .

E' riportata anche la larghezza del lobo a -3 dB nel piano H principale, in gradi . Nel piano H i minimi e i lobi laterali non sono molto pronunciati.

Campo nel piano-E (sectoral e pyramidal horn)

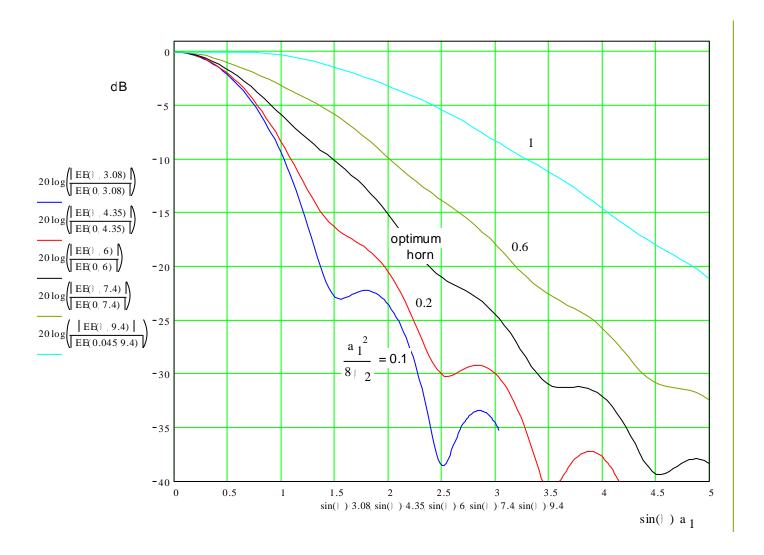
Parametro $s = b_1^2 / 8 \rho_1$

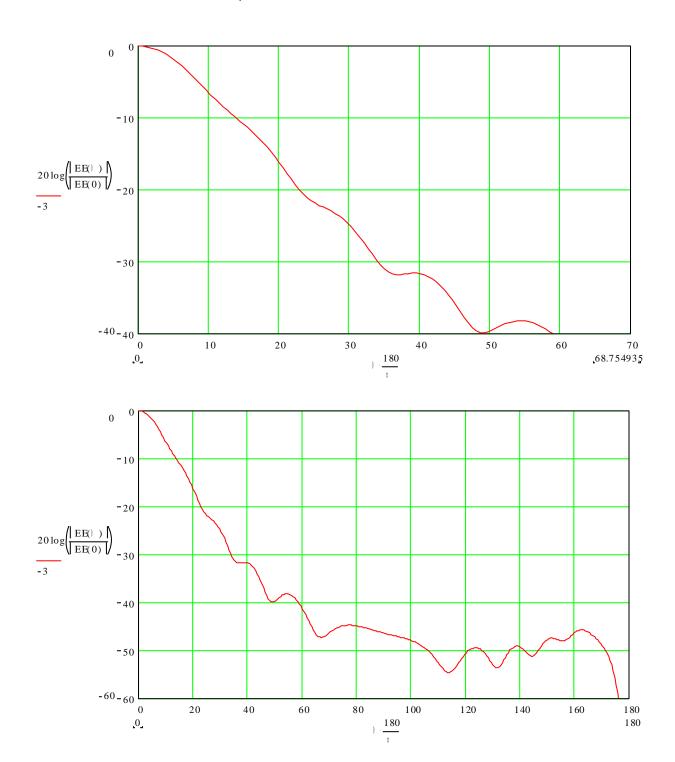


Ampiezza del campo E al variare dell'angolo θ (piano E principale, ϕ = 90°) normalizzato . Il pattern viene riportato in dB in funzione di $\sin(\theta)$ b₁ per alcuni valori del parametro s . Dipende ,quindi, dalle dimensioni b₁ della bocca e dalla lunghezza della tromba indipendentemente se trattasi di un *E-plane sectoral horn* o di un *pyramidal horn*.

Si può notare che se l'apertura b_1 è molto grande rispetto alla lunghezza della tromba ρ_1 il lobo principale si presenta con due massimi vicini ed un minimo proprio nella direzione dell'asse .

Esempio 1 : b_1 : 4.715 L_e : 11.116 (condizioni di optimum horn)


il parametro s diviene : $s := \frac{b_1^2}{8|_1}$ s : 0.256


Campo E nel piano-E principale (ϕ = 90°) in funzione dell'angolo θ ; in questo esempio sono stati usati i parametri per un trombino piramidale (caso di optimum horn) con guadagno G_i = 22.6 dB . La larghezza del lobo principale a –3 dB , nel piano-E, è di \pm 5.7°.

Campo nel piano-H (sectoral e pyramidal horn)

Parametro $t = a_1^2 / 8 \rho_2$

Ampiezza del campo E al variare dell'angolo θ (piano H principale, $\phi = 0^{\circ}$) normalizzato . Il pattern viene riportato in dB in funzione di $\sin(\theta)$ a_1 per alcuni valori del parametro t . Dipende ,quindi, dalle dimensioni a_1 della bocca e dalla lunghezza della tromba indipendentemente se trattasi di un *H-plane sectoral horn* o di un *pyramidal horn*.

Da queste due figure si può notare che, in questo esempio, la larghezza del lobo nel piano-H a -3 dB è di $\pm 6.5^{\circ}$ (nel piano-E era di $\pm 5.7^{\circ}$; il lobo principale è, quindi, abbastanza "rotondo"). Non sono presenti, nel piano-H, veri e propri minimi e lobi laterali evidenti. Il rapporto fronte/ retro è molto elevato (dell'ordine di 50 dB).